冷冻电镜观察辐照敏感电池材料与界面
来源:物理研究所|发布时间:2021-12-28|【 】
虽然锂离子电池商业化已有30年,但是由于表征技术的限制,许多电池材料和界面相关的难题如固体电解质界面sei膜性质一直困扰着电池学术界和工业界。随着未来高能量密度的锂硫电池、锂空电池和固态电池的发展,针对其中的电池材料和界面的表征越来越具有挑战性。这是因为涉及的材料和界面含有较多的轻元素,具有较高的化学活性,且对空气和电子辐照敏感。冷冻电镜(cryo-em)自2017年首次被应用到电池材料领域中(nano lett. 2017, 17 (12), 7606-7612.),在表征辐照敏感材料上发挥着重要的作用,取得了前所未有的结果,如金属锂非晶到结晶的形核过程(nat. mater. 2020, 19 (12), 1339-1345.)。因此,cryo-em在材料领域也备受关注,帮助解决许多电池材料与界面相关的关键性科学问题(图1)。
近期,中国科学院物理研究所/北京凝聚态物理国家研究中心先进材料与结构分析实验室a04组王雪锋特聘研究员、清洁能源实验室e01组王兆翔研究员和国内高校相关课题组合作,在冷冻电镜观察金属锂电池材料和界面方面开展了一系列工作。相关结果不仅加深了人们对电池材料与界面微观结构的认识,而且提供了电极材料、电解质材料、载体材料及其界面的设计理念和思路,共同推进未来高性能高安全电池的发展和应用。
具体研究结果如下:
相关工作发表在iscience, energy storage materials, nano energy, nano letter和cell reports physical science,得到了国家自然科学基金委和北京市自然科学基金的资助。
1. weng, s.; li, y.; wang, x., cryo-em for battery materials and interfaces: workflow, achievements and perspectives. iscience 2021, 24 (12), 103402.
https://doi.org/10.1016/j.isci.2021.103402
2. yang, g.; liu, z.; weng, s.; zhang, q.; wang, x.; wang, z.; gu, l.; chen, l., iron carbide allured lithium metal storage in carbon nanotube cavities. energy storage materials 2021, 36, 459-465.
https://doi.org/10.1016/j.ensm.2021.01.022
3. yuan, s.; weng, s.; wang, f.; dong, x.; wang, y.; wang, z.; shen, c.; bao, j. l.; wang, x.; xia, y., revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. nano energy 2021, 105847.
https://doi.org/10.1016/j.nanoen.2021.105847
4. yang, g.; zhang, s.; weng, s.; li, x.; wang, x.; wang, z.; chen, l., anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. nano lett. 2021, 21 (12), 5316-5323.
https://doi.org/10.1021/acs.nanolett.1c01436
5. zhang, x.; weng, s.; yang, g.; li, y.; li, h.; su, d.; gu, l.; wang, z.; wang, x.; chen, l., interplay between solid-electrolyte interphase and (in)active lixsi in silicon anode. cell reports physical science 2021, 100668.
https://doi.org/10.1016/j.xcrp.2021.100668
图1. cryo-em应用于材料领域的工作流程,包括样品制备、转移、成像和数据处理过程。1
图2. cnt储锂(放电到0 v)的cryo-tem图像(a)、黄框区域的放大图像(b)以及eels线扫(c);cnt储钠(沉积2 mah cm-2)的cryo-tem图像(d-f),图中的插入图为对应的白框区域的fft图像,(f)是(e)白框位置的放大图;(g)li /na 在cnt中的传输与cnt腔中金属锂的形成机理的示意图。2
图3. sei膜中有机、无机组分分布(a-c)及其对应的力学性能(d-f),(a)和(d)1 m lipf6 ec:dec (1:1 v/v);(b)和(e)1 m litfsi dol:dme (1:1 v/v) 2wt.% lino3;(c)和(f)2.2 m litfsi 0.2 m lipo2f2 fec:hfe (2:1 v/v)。3
图4. 石墨在lifsi(a和c)和lipf6(b和d)电解液中充/放电到不同状态表面sei膜的cryo-tem图像,(a-b)首周放电到0 v,(c-d)20周循环后,插入图是对应的fft图像;(e)循环20周后石墨表面sei膜中三种主要无机成分的统计数据。4
图5. 首周循环过程中cryo-hrtem图像(a-d)和eds面扫(e-h);(i)前两周循环过程中sei膜含量的演变;(j)多周循环后sei膜含量的演变;(k)多周循环后非活性的lixsi合金含量的演变;(l)循环过程中si负极结构及其表面sei膜的演变。5
附件下载: